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Chapter 1
Terms and Conventions

Most important general terms, shortcuts and those defined for purpose of

this document.

VHDL VHDL-AMS
model - VHDL-AMS description of system

whole model

e main (top) entity that instantiates other subentities

e compiled main entity integrated with Simulink, according to con-

text

entity general specification of VHDL-AMS unit and its interface
architecture implementation of entity, its behaviour
instantiated entity component of upper entity

quantity analog value of specified type, scalar or vector

class Java class of translator framework used for parsed data and persistent
objects

OOP Object Oriented Programming, high level abstraction that encapsu-

lates data and code together in objects and reuses them
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structure C++ OOP data type in developed libraries, generated one per
entity

analog analog quantities integrated by DOT attribute
ODE ordinary differential equations
API Application Program Interface

compiler - VHDL-AMS-RT translator (parser and generator), and its frame-

work classes

integration libraries uniform C++ constructions, interface between Simulink

and top entity layer

tools - programs that integrate translated model with integration libraries

and Simulink
method Java code encapsulated in object - member function of an class

persistent binary or text representation of objects and their relations - ref-

erences that can be saved and read from file.
serialized Java synonym for persistent

designer - designer of VHDL-AMS models, user of compiler and integration

tools
developer -analyst, designer and programmer of compiler and tools
RT real time
LRM VHDL-AMS language reference manual

DSP digital signal processor, used for fast operations on analog/digital data

flow

Format conventions used:
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name extension() JavaCC BNF production with Trans return type and
optional parameters, if not specified otherwise. Its ’call’ stands for its

use - reference from other production.

REAL VECTOR VHDL keyword or important standard identifier
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Chapter 2
Introduction

Engineers need a VHDL-AMS RT simulation tool integrated with known in-
dustrial modeling framework, as Simulink. There are full-featured simulation
environments ADVance MS from Mentor Graphics, Corp, TheHDL and Ve-
riasHDL from Analogy-Avanti, Inc. They have a lot of usefull features. This
makes overhead very long for RT simulation. Free simulator hAMSter has
medial support for VHDL-AMS. However, its execution limitations don’t fit
for RT also.

Instead of large compiler and own simulation environment, translator of
most used language subset to C++ is developed. It uses interface to Simulink.
High speed of C++ and Simulink, stability, reliability and well structured
API between them suit for fast and robust RT simulation. Existing Simulink
modules and libraries are used and actuated from others. Existing support
of A/D cards allows use of Hardware-In-the-Loop (HIL).
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Chapter 3

VHDL-AMS RT

VHDL-AMS (IEEE 1076.1) is Very High Speed Integrated Circuit Hardware
Description Language for Analog and Mixed Signals. It extends VHDL
(IEEE 1076) that describes digital circuits. It has efficient and powerfull ca-
pabilities for analog and mixed signal models |2]. This extension includes full
VHDL. It enhances formal description of electrical, mechanical, hydraulical
and other systems and processes.

VHDL-AMS is modular, structurised and extensible. Separated formal
interface and implementation supports team work. It’s easy to use by non-
programmers and no-IT specific engineers. Development process is fast,
model is robust and safe. It defines what system does, instead of how it
works (what you write is what you mean). Models are platform indepen-
dent. Designers can choose from more simulation tools. They profit from
wide range of libraries that function also as documentation and reference for
manufactured products.

VHDL-AMS offers a lot of language constructions with powerfull expres-
sionality. Behaviour of modeled systems is very detailed and thus suitable
for REAL-TIME simulation. See [4].

VHDL-AMS-RT is VHDL-AMS Subset for REAL-TIME [3, Chapter 0].

It eliminates parts that don’t fit requirements of Real Time simulation.
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Chapter 4

A brief Review of used

Technologies

4.1 Matlab

Matlab stands for Matrix Laboratory, a framework from Mathworks, Inc.
It’s widely used by engineers, scientists and mathematicians. It has own
programming language with some structural possibilities, very efficient nota-
tion and implementation of vector and matrix operations. Reusable blocks
of code can be defined in M file, that is automatically precompiled on its first

use. Matlab is available for several platforms.

4.2 Simulink

Extensible modeling and simulation software environment integrated with
Matlab. It has a lot of visualisation and debugging possibilities. User in-
terface is easy to use and intuitive. Large set of toolboxes - standard. cus-
tomized and 3rd party modules - is used to build models.

Fast and specialized model can be defined as S-Function, a module writ-
ten in other programming language. It represents one subsystem, model
or process, that can contain its own objects, structures, threads and func-

tions. S-Function is implemented as user library of specified functions that
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are called from Simulink on each simulation step and interact together. It
can be binary library compiled from C/C+-+, Ada and Fortran sources, or
precompiled M file.

Simulink is known, used, stable and fast. It has interface to A/D cards
that can be easily connected to any Simulink model and can be used in RT

simulations.

4.3 C and C+-+

C is general programming language providing both high level abstraction
structures and low level efficient operators. It’s ANSI and industrial standard
used for interface specification of extensible software moduls - open systems.
Source is easily portable to different platforms with minimal or none changes.
Compiled binary code is machine-executed, optimized and fast.

C++ adds a large set of Object Oriented Programming (OOP) features
to C, still allowing to write efficient low-level programs. Classes and structs
are OOP types that encapsulate data and code. Object is instance - variable
of class or struct. Member functions are used to access object’s variables that
can be protected from direct use by object’s environment. Child class can
inherit from parent class obtaining access to specified subset of its variables
and functions. Child can implement or specialise virtual functions defined
by parent.

C++ allows to write prototyped, easily readable, abstract and efficient
program. Features are: classes, overloaded - redefined functions and opera-
tors according to argument types, templates - generic constructions (classes,
functions and operators), exceptions. Types are more checked then in C, so
code is safer. Syntax is simple, clean, short and easy to read, inherited by

other successfull languages.
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4.4 Java

Java is modern OOP programming language defined by Sun. It’s used for
standalone, Web/Internet and embedded device applications, being indus-
trial standard for latter two areas. It is usefull for tool development, as
it’s stable, well-tested, free and widely used. It supports UNICODE 16 bit
international characters. Its slower speed is not as important as the qual-
ity and reliability. Generated platform independent byte code is interpreted
and often used parts are compiled on the fly by former Just-In-Time (JIT)
and today’s HotSpot technologies. It can be run, debugged and reused on
any platform without need for source code distribution, what suits for in-
dustrial and commercial use. Native functions defined in C/C++ are also
possible. Java objects can be used directly from Matlab. All this speeds up
development process, future integration possibilities, safety and robustness
of designed applications.

Language is based on C/C++, but much simplier and thus easier to learn
and use. It provides constrained set of OOP focused on clear uniform use
of objects, reducing possibilities for errornous, hard readable and ambiguous
constructions. Developer profits from automatic garbage collecting, language

support for multithreading and standard powerfull API libraries.

4.5 Parsers

Grammar formally describes syntax of language. Low-level lexical specifica-
tion - tokens are terminals defined by regular expressions. BNF (Backus-Naur
Form) productions are rules, that provide higher abstractions. They consist
of grouped, optional and repeated referenced - ’called’ rules and tokens.

Parser (translator, compiler) is program that accepts inputs of given lan-
guage. It is created by 'Compiler Compiler’ from grammar definition. This
must conform to specified restrictions, so parser can be machine-generated.
Generally, left recursion must be transformed.

Parser reads input, analyzes it and generates AST (Abstract Syntax Tree)
for it. Different parsing technologies exist. Several Compiler Compilers as



FEI TU KosSice Diploma Thesis Letter num. 12

lex, yacc, bison, PCCTS/ANTLR, JavaCC are used. They generate parsers
- stack machines that accept sentences of given language, translators - sub-

stitution engines, and compilers to binary code. See |[PrecentHall|.

4.6 JavaCC and Jjtree

JavaCC is state-of-art parser /translator tool. The source JJ file is a grammar
specification consisting of token, BNF and other definitions. Arguments can
be passed to productions and returned values can be assigned to variables.
Standard Java code can be added around BNF expansions inside {} pair,
that is executed when those rules are parsed. This code can be used to
execute - interpret or translate/transform parsed source. It is not called
during lookahead evaluation (when decision is made at choice points). Basic

grammar defines:

parser class Java definition of parser class that is extended by JavaCC

generated code for tokens and productions

parser options case sensitivity for tokens, default lookahead (number of
tokens to look ahead at a parsing choice), debugging and UNICODE

characters
skip characters to be ignored, white space

tokens Terminal regular expressions. Less complex then BNF, they can con-
sist of other tokens. Character lists and intervals can be used. Tokens
are defined in separate for different lexical states that function as simple
low-level parser state machine. Special tokens are those unimportant

for parsing, usually comments.

productions BNF has symbolical and more structured rules then token def-
initions. BNF has structure ezpansion-return-type name-of-production
( optional-parameter-list) : {java-block} {expansion-rules}. Java block
is usually used for definition of local variables. Production can op-
tionally declare and throw exceptions. Expansion rules are grouped in

parentheses:



FEI TU KosSice Diploma Thesis Letter num. 13

[] or ()? optional appearance
()* zero or more repetitions

()+ one or more repetitions

other local syntax/semantical lookahead specifications, JavaCode produc-

tions and JavaCC API give full control over parsing process

JavaCC generates (but doesn’t override) several Java classes. Object of
parser class represents whole translator. It is attached to input stream, pos-
sibly from a file, that is parsed by chosen root production method. Its output
(tranformed input) and byside effects (generated files...) are the result of
translation. It can be embedded in other systems and gains all advantages of
Java program. Its classes, usually Token, ErrorHandler and TokenManager,
can be customized. Tool Jjdoc generates very usefull HTML documentation
of grammar BNF tree. See [8].

Jjtree is JavaCC extension, that generates JavaCC grammar and AST
tree classes from JJT definition. Its grammar source has few additional
parts to JavaCC grammar. Generated AST classes can be customized and
use additional general API to access parsed ordered nodes of any parsed
rule. This can be used for context dependent and automated use of parsed
input. AST classes are defined separated from JJT source and need to be
synchronized with changes to JJT grammar structure. Because nodes are
indexed and optional /repeated appearance must be checked 'manualy’, it

doesn’t fit for large and complicated grammars.
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Chapter 5

State of the Art in AMS and RT

Simulation

AMS Simulation of abstract models and virtual prototypes speeds up product
development and finds possible problems. Ability to simulate them together
with real hardware gains designer faster, safer and accurate results. This

places hard restrictions on simulator.

5.1 Analogy-Avanti, Inc.

TheHDL and single-kernel environment VeriasHDL support modeling lan-
guages MAST, SPICE, VHDL-AMS and Verilog-AMS. Their products are
used in Automotive, Communications, Military, Aircraft and Power electron-
ics industries.

There are several ways for mixed signal simulation: glued connects analog
and logic simulator, native has one simulator, mixed is native version con-
nected to logic simulator. Those configurations have own synchronization
and logical event queue approaches. The most known is patented Calaveras

algorithm of native simulator. It is robust industrial simulation framework.
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5.2 Mentor Graphics, Corp

Mentor is focused on world of digital integrated circuits. Simulators ADVance
MS (ADMS), Eldo and Eldo RF are used for mixed signals. ADMS supports
systems defined in VHDL-AMS, Verilog-AMS, VHDL with Vital, Verilog,
SPICE and C. Fast efficient ModelSim solver is used for digital part, and

analog portions are simulated by one of several algorithms.

5.3 hAMSter

Simulator HAMSTER is for MS Windows only. Own editor, simulation en-
vironment, limited ODE and unlinear solver. Only scalar quantities are al-
lowed. Limited processes are supported. Integer and enumeration types,
several predefined attributes, libraries and several packages can be used. It

is focused on analog part.
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Chapter 6

Research Problem Statement

6.1 Aim

e Define most usefull subset within VHDL-AMS RT with focus on analog

and mixed signals, suitable for implementation by this project

e Analyze strategies

— integrating VHDL-AMS model with Simulink, interface between

Simulink and main entity

— connecting inner VHDL entities to each other and handling their

analog signal flow to Simulink, that passes by main entity
— transforming VHDL-AMS code to C++ code

— leaving semantical checks to C++ compiler up to maximal level -

no symbol table, type control...

— language mapping - definitions of C++ constructions for core-
sponding VHDL-AMS statements

— processing and implementation of special features and language

constructions

— extensibility in future

e Create the framework
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— general interface between entity and its environment
— libraries and interface between the main entity layer and Simulink
— entity translator to C++

— model integration tool that generates integration layer of top en-
tity

6.2 Need

Software models, formal specification and prototypes increase productivity
of development, design and manufacturing processes. Industry follows stan-
dards as VHDL-AMS to get maximal compatibility of product descriptions
and specifications. Users can choose from more simulation environments for
given standard, one that suits their needs.

RT simulation of models connected to real existing systems is a must to-
day. Hardware-In-The-Loop (HIL) simulation shows hidden weaks, increases
development speed, quality, robustness and safety of product. It’s not suf-
ficient to test analog and digital parts in separate, because they influence
each other in unpredictable ways. This is critical in aircraft, automotive,
electronics, communications and other industries.

There is presently no VHDL-AMS-RT Simulator on the market. There is
a scientific and industrial need for such a framework that offers possibilities

to use existing models.

6.3 Value

Project gives designers possibility to test simple mixed signal models in real
time. Simulated model is integrated to Simulink, so it uses vectors, efficient
configurable ODE solver, simulation control options and commands, and in-
tuitive user-friendly interface. Inputs and outputs of model can be connected
to standard source/display items, any other models and external hardware
interfaces as A/D, D/A converters. Model is translated to C++ and com-

piled with Simulink libraries, or processed to C language and compiled for
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DSP. Simulation is very fast and usable in RT. Designer uses all power from
Matlab and Simulink.

This pilot project finds possible way, the strengths and problems of small-
scale VHDL-AMS-RT implementation. Proposed interface and architecture
is open, modular and easily extensible in chosen limits with focus on mixed
signals. Support for complex numbers and complex vectors, processes, signals
and other control flow statements can be added. Connection layer to other
simulator environments can be defined by standard IPC or shared library
communication. Translator leaves lexical checking for target C++ compiler,
so development process is more focused on implementation of larger VHDL-
AMS subset with its special features. Digital operations are easy to add,
some of them are implemented, or interface to existing digital simulators can
be defined.
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Chapter 7

Sources

7.1 VHDL-AMS Grammar from Grimm

There are pure VHDL grammars for Yacc, that don’t include AMS exten-
sions. The available VHDL-AMS grammar was from Christopher Grimm for
Jjtree. It confirms original LRM specification, using the same production
names. It is clean and easy to use and compare with LRM for implementa-
tion notes. It does some symbolical error checking and syntax error recovery
of blocks. Productions that require semantical lookahead based on sym-
bol tables and local context, are not used during parsing. Thus respective

VHDL-AMS code parts are parsed by different, syntactically equivalent rules.

7.2 VHDL-AMS translator from Vince, Dudas

This framework generates one DSC file per entity and one M S-function
per each its instantiation. DSC is commented text-format description that
keeps information about entity’s interface. One Simulink MDL file is created
that encapsulates all entities as separate S-functions, connected together by
multiplexors and demultiplexors. This powerfull structured hierarchy copies
tree of instantiated entities.

Thus whole model is reusable and easy to debug in Simulink, because user

can access and set any signal between entities. Instantiation dependencies
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are checked recursively, required entities are processed first.

Translator is based on Grimm’s JJT grammar. Transformation is per-
formed by methods added to Jjtree generated AST classes. Statements are
collected, grouped as: generics, REAL ports and internal quantities, compo-
nents with generic and port maps, derivations and other equations. Those
lists are saved to DSC. Structured M S-function with uniform skeleton is
generated per each entity. It defines other functions for different simulation
tasks. Additional Simulink ports to instantiated entities are defined. MdlIni-
tializeSizes sets number of ports, states and simulation options. Execution
part (MdlOutputs) receives integrated values from Simulink, does equations
and returns output ports to Simulink. MdlDerivatives evaluates derivations
directly in assignment to vector that is sent to Simulink. Actual generics
are set in latter two functions. Three other trivial or empty functions are
generated. Equations - simple simultaneous statements with basic mathe-

matical operators - are the only supported execution statements.
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Chapter 8

Targets

8.1 Simulink and RT

The required calculation time for each time step must stay

below some predictable maximum time [3, Chapter 0].

Simulink calls several user-implemented C functions, on initialization, each
step and end of simulation. It offers several fixed-step ODE solution methods.
Simulation is fast and fits for RT.

Even RTW (Real-Time Workshop) is designed for RT simulation, it doesn’t
suit our purpose. It uses just a subset of Simulink interface. Specially, RTW
allows only vector inputs/outputs of width known before model is initialized.
Our solution needs access to full Simulink API. However, this doesn’t restrict

the generated model from being used in RT in any way.

8.2 C++ MEX

Model code translated to C+-+ is fast, robust, has high structurality and
portability. It can be used in other frameworks than Simulink with minimal
changes. Such a model uses 3rd party and customer’s modules accessing
them through their interfaces defined in C/C++. Code is preprocessed to C
and compiled for DSPs, because generally there are no C++ compilers for
them.
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Support for multifunction AD/DA and IO card Lab-PC+ from National
Instruments [6]can be added. C++ drivers from National Instruments Data
aquisition utilities NI-DAQ 7] for Borland C++ and Microsoft/Visual C++.



FEI TU KosSice Diploma Thesis Letter num. 23

Chapter 9
Strategy analyzes

After general decisions before beginning of implementation, specific issues
were analyzed during development when involved. Those two processes were
tied and hard to separate. Analyzes depend on grammar and behaviour
specification. Structure of grammar that makes skeleton and is a part of
translator was changed and restricted during development. Also other be-
haviour constraints and relaxations were defined according to existing and
future implementation needs. Thus descriptions of respective production

rules are here instead of presenting them in separate.

9.1 Translation methodology

9.1.1 Traversing AST

This was tried by [Vince, Dudas|. Jjtree grammar is used. Generated AST
classes are customized by methods that perform translation tasks.

Main problem is separation of JJT grammar and AST code. General
access to any parsed node is by API functions and node indices rather by
their names. They must be retyped and give possibility for runtime errors
that are hard to find. Checking of optional nad repeated nodes must be done
by Java conditional and loop commands. This is a lot of long trivial code,
that only copies existing grammar structure and depends on it. Developer is

counter and source code comparator. If grammar is reorganized, respective
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AST code must be searched for and reflective changes made. This is much
more complicated in presence of a lot (186) AST classes defined in their own
files. Maintenance of such project becomes a nightmare.

Such approach makes illusion that it supports team work. Source is dis-
tributed to number of different files that are not updated automatically on
grammar change. Ties to JJT grammar must be checked manualy. It is not
flexible and incremental development is slow. Even if grammar is already
well structured, optimized and unchanged in future, little ’active’ part and
big skeleton doesn’t seem the best solution for large projects. A lot of trivial
- waste code must be written.

Problems could be reduced, but not eliminated by use of JTB, another
AST possibility for JavaCC. It offers type-safe access to parsed nodes by
symbols. JTB definitions depend less on grammar changes, however it is still
distributed in a net of files.

Author added translation of simultaneous if statement to this frame-
work using Trans container. Combination of AST and collecting - separating
parsed statements solves only few language features. It is not general, can’t
grow lineary and is very limited to extend. None of this code is used in
presented translator to C+-+. Approach was analyzed and results influenced
decisions and solutions of this project. Idea of description files is enhanced

by use of Java serialization.

9.1.2 Substitution production rules

Decision not to use Jjtree was chosen. JavaCC production rules do transla-
tion, substitution and integration tasks. This is what JavaCC productions
suit for - to transform and pass up (return) usefull representation of parsed
input. Tasks of former AST classes can be easily and automatically done by
Java block inside {}. It is called directly from JavaCC rule at point where
it is parsed. This code can be in nested grouped, optional and repeated
statements and is executed each time rule accepts input. Results of ’called’
productions are assigned to local Java variables in type-safe way. Symboli-

cal use of parsed nodes and automated execution of specified code enhance
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simplicity and quality assurance. Translator source is very expressive and
resembles high-level data-flow driven program.

BNF methods generate and return a container object capable to hold
concatenated strings, tokens or any printable objects. This Java containter
class, called Trans, is created to hold any printable objects, possibly nested
Trans. Content is printed with default or user-specified indentation. This
by-side product is fully independent from this project and JavaCC, it can be
used for format transformators, macro and template engines.

Important improvement is easier and safer translator development pro-
cess. Translator code is compact, main part in one JJ file. Even most of code
is centralized, it fits for team work [Trans doc|. No dependency checks be-
tween grammar rules and generation methods are needed when some of them
was changed, as they are all at one place. Code is type safe and very easy to
modify. Development control was more efficient and less painfull. Necessary
semantical checking for ports and generics is done by passed arguments and
returned objects of specialized Java classes from selected productions. Those

customized objects carry aditional information used for checks performed.

9.1.3 Main grammar changes

Translator is based on Grimm’s grammar. All Jjtree-specific code is removed,
so it’s a pure JavaCC grammar. A lot of semantical grammar production
rules - descriptive only when used without symbol tables - are skipped and
removed, split or merged. Original 334 productions are transformed to 234.
Grammar is more compact for our purpose. Translator source code reduced
from JJT source, 186 decentralized AST and 4 JJT additional classes (gener-
ated in unique files) to JJ file and 11 framework classes. Other 2 of original 4
classes defined by Grimm are used. This dramatically increases development
speed. Startup and execution of translation process are faster.

Because VHDL-AMS is case unsensitive, and C/C++ case sensitive, all
identifiers are transformed to lowercase. C++ layer and integration library
identifiers consist of uppercase, that prevents the conflict with user specified
VHDL-AMS code. C+-+ definitions used directly by VHDL-AMS code are
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in lowercase. They're in different case for highlighting in this document, as
'REAL_VECTOR’.

9.2 Development process

JavaCC source indentation and structuring prevents hard-to-find JavaCC
errors . Those are often reported at wrong places and only one at time,
so long JavaCC processing must be repeated. See [Trans|. BNF HTML
documentation allows fast orientation in grammar.

If translation code breaks parsing process, unusual runtime parser errors
raise for correct VHD input. Those are all eliminated by use of simple rules.
Generally, created container object must be returned from main block of
production, or from its end [Trans|.

Compilation of Java classes finds other errors uncaught by JavaCC. Re-
port and generated compiler class resembles JJ code, so more errors can be
fixed at the same time.

Most of BNF productions do trivial transformation from VHDL to C++.
Complicated rules and special features have by-side effects, as collecting
DOTed quantities, ports and generics and writing to description files. Frame-
work persistent classes are used. They carry symbolical information, that is
read during translation and integration of upper entity. Semantical checking
that can’t be left for C++ is done.

C-++ general entity interface is defined. It is implemented by translated
entity code in H files. Integration CPP file is generated for top entity, that
defines functions for construction and destruction of model object, its ini-
talisation and simulation. They use libraries, C+-+ layer interacting with
Simulink.

Framework classes and libraries are tested independently from translator

first, then together when translating and simulating model.
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9.3 Integration of instantiated entities and whole

model with Simulink

9.3.1 Open box

Framework of Vince-Dudas generates well structured MDL model that copies
tree of instantiated entities with their mapped ports. This gives designer very
usefull possibilities [chapt. 7.2]. Unique M S-Function generated for each
instantiated entity has direct access to ODE solver with own list of derivations
and integrals. That fits for VHDL-AMS feature of DOTed quantities specified
"directly on place’, in architecture behaviour definition.

The price is complexity of model generation process and slow execution.
If designer had a lot of small, structured reusable entities, most of the sim-
ulation time was spared for signal passing between entities and Simulink
"channels’.

Creating one C++ S-function for each entity, all of them connected on
Simulink side, wasn’t much more efficient. The small C++ part could be of
the same speed as M S-functions, that are pre-compiled by Matlab to faster

format on the first use.
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Several S-Functions in one hierarchical Simulink model

9.3.2 Black box

Translator generates one C+-+ S-function for whole model - main entity and
all its subentities. C++ code created for each entity uses simple interface, is
automatically indented and well structured. S-function handling code called
by Simulink is separated in another, stable layer in file model.cpp. Thus
translation result is better to read then M code and user can find semantical
and other errors easily. C++ S-function gain developers full Simulink AP,
not available to M S-functions. Analyzes, programming, tunning, integration
and future development are safer, easier and faster. High simulation speed
is obtained.

Such a separation was impossible by M code, because it doesn’t have com-

parable structural possibilities. Matlab can’t pass parameters to M functions
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by reference, global variables must be redeclared in functions that use them.
OOP encapsulation of code by objects and operator overloading is not pos-
sible. This makes its extensible use in large project very hard.

Designer can debug an inner entity separately by making different model
for it. Additional debugging support can be implemented by C/C+-+ asser-
tion macros and functions that are called directly from VHDL-AMS code.
Those can be automatically filtered or commented after tests, when in pro-
duction use.

Dependencies between entities are not checked. Translation of entities
must be processed starting from down to main entity. It’s left up to user or
an automation tool as ‘'make’. Simulink model (MDL file) is not generated,

because it is platform and version specific.
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9.4 General interface of architecture

Entity as unit of larger system interacts with its environment in clean way
by generics and ports only. It can be instantiated - owned and used by other,
‘upper’ entity. The top, main entity represents whole system and passes
ports to/from simulation environment, Simulink.

Entity can integrate quantities (internal or from port) directly in code,
distributed ’on place’. Simulink requires all integrated values and their
derivations to be passed in special way together in the same time. Those

are ’collected’ from source and 'registered’ at simulation initialization. Then
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they are passed to and from Matlab on each simulation step.

Uniform MatlablInterface allows connection to other entities and librares,
that communicate to Simulink. It defines general way to send and receive
ports, derivations and analog values and their widths to/from Simulink. It
is implemented by types REAL and REAL VECTOR.

9.4.1 Connection to Simulink

Connection to Simulink is used for ports and analog quantities. Noninte-
grated analog and digital or discrete signals are implemented on C+-+ side.
Number of analog quantities (states) and their default values are sent to
Simulink during initialization. Derivations and output ports are sent to
Simulink, integrated values and input ports are read at each simulation step.

No more than one use of the same whole model is allowed Simulink.
That’s because of static variables and fixed generated S-functions name
'model’. Otherwise unique file model.cpp had to be generated. Designer
can encapsulate several instantiated entities in simple higher entity that be-
cames new model.

S-Function is implemented as dynamic library. If already used by running
Matlab and Simulink, those must exit before model is recompiled. Fixed-step

ODE solver is required. Multi-step methods can make problems, see [Break]|.

9.4.2 Hierarchical entities and generics

Both actual mapped generics and ports of instantiated entity - only names
or order and number are checked; type-checking is left for C++ compiler.
Port and generic definitions (types, names, modes, default values, widths)
are collected in lists and saved in ENT file at entity declaration(). Class
Port is used. This information is read and used if entity is instantiated or
integrated. Default generics are used if omitted. Named ports and generics
at element association() are processed correctly. Actual values of generics
are set in call to its constructor when entity object is created in upper entity

or integration layer.
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To keep whole approach simple, there is no posibility to set generics from
Simulink. Main entity can’t have any generics, even with default values.
Designer can instantiate it in trivial higher entity that specifies and passes

generic values and connects the ports.

9.4.3 Ports

Input vector ports of main entity need width specification. Simulink allows
dynamically sized ports, but restricts process of parameter exchange at ini-
tialization of S-function. It must know number of analog states, before it
passes actual width of input ports. Because analog quantity vectors can be
assigned from input ports, translated model needs their size first. So main
entity must have all port widths specified. However, instantiated entities can
have unconstrained input and output ports, which size is set in runtime from

owner entity. Unconstrained internal quantity vectors must be set before use.

9.5 Vectors

Vector quantities and ports are implemented by C++ template - generic
structure VeCtor<class T>. It has constructors, assignment operators and
element accessor - operator (inder). This way a vector of any element
type can be easily defined in C++ and used by models. Standard type
REAL_VECTOR has + - * / operators that perform those operations on
its items, where one parameter can scalar REAL. Underlying array is always
allocated dynamically in vector constructor (if width is known) or on first
assignment (if unconstrained).

VeCltor is subclass of MatlabInterface and implements its functions. Items
of vector are sent to/from Simulink ports. DOTed vectors have their deriva-
tions sent to, and integrals received /sent from Simulink as whole. Derivations
and values of REAL _VECTOR are implemented as separated vectors for effi-
ciency. This restricts the use of integrated vectors. They can be accessed only
in way vector _one’DOT=vector two, no: vector one’DOT(0)=vector_two(0)
or vector _one(0)’DOT=vector_two(0).
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General REAL VECTOR and REAL_VECTOR(size) declarations are
allowed only (and similiar for any defined vector types). The latter is defined
by subtype indication() that sets flag inSubtypelndication. It calls name()
and name_extension() that handle parsed data in special way. Vector size
is assigned to variable typeParameters and then carried in object of class
Port, rather then passed to C++ as part of vector type. It becomes a default
or first parameter to vector constructor. Vectors of unspecified widths have
memory allocated on assignment. Sizes are always checked in runtime and
shorter vectors can be assigned to longer ones.

Element access parenthesis operator (index) uses name() and name _extension().

Parsed index value is put to generated C++ code as it was.

9.5.1 Vector literals

Vector constant - literal is a special form of aggregate statement: (expr0,
exprl, ..., exprN). This is translated to C++ code (VeCt(N,expr0),exprl,...,exprN).
Aggregates are used in other constructions according to their context, as lit-
erals of composite types - records, or their parts - subaggregates. Those
are not implementable by this framework, because we don’t check types of
expressions and context of their use, possibly nested.

Translated C++ code calls template function VeCt(Size, FirsElement)
that creates empty vector with elements of specified type, size and sets its
first item. Then operator comma is called that adds successive items to
vector, index of last added item is remembered between those calls. Enclosing
parenthesis are required because of low precedence of comma operator.

Access operator (index) is not distinguished from other uses of parenthesis
by syntax rules. This involves need of symbolical tables for detection of

function and procedure calls.

9.5.2 Cached vectors

Nested operations produce intermediary results, new vectors. They are not
needed anymore after evaluation of whole expression. Repeated dynamic

allocation and disposion is time-consuming and can’t be used for RT.
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Local arrays reservated on stack in very fast way, can be used only directly
in generated function go(...), or in a macro. They can’t be returned from
other functions or operators to go(...), because reservated stack is not valid
later. This restricts use of C+-+ structural possibilities and involves analyzes
of evaluation tree.

Chosen way is to dynamically allocate intermediary arrays on first need,
and then reuse them. They are returned from functions and overloaded
operators. A queue of unused ’'cached’ vectors of possibly different widths
is maintained. They are deleted at model destruction. This keeps whole
approach simple and gains from C++ high level abstractions. Cached vectors
are defined by template tempVector<class T>.

First pass that involves allocation is much longer. However, it is called at
Simulink initialization before first simulation cycle. More cached arrays can
be used later, in other code branch - at conditional IF, CASE and BREAK
statements. Those are allocated when needed, thus delaying simulation step.
Possible, unimplemented solution is to duplicate list of cached vectors after

initialization pass. This should make reserve high enough for demand peaks.

9.6 Collecting DOTs and ports

Derivation of quantity - in 3] for integration only - is parsed by name() and
name_extension(). Those are used in other ways, so DOT is checked and
handled specially. ’Exotic’ use of name_extension(), as subtype_ declaration(),
are limited. Quantity’DOT is transformed to C++ code DOT(Quantity).
This is function defined for types REAL and REAL VECTOR.

Entity defines analog and discrete quantities together with no distinction.
Their behaviour is known from body of architecture. Scalar and vector in-
ternal quantities and output ports can be changed by DOT. Simulink gives
limited control over analog values and their derivations. S-function is re-
quired to send and receive them in one vector of length known at model
initialization time. However, DOTs are specified directly at code. Thus they
are ’collected’” by parser and registred in constructor of architecture. Their

list is maintained during simulation, containing integrated internal and port
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quantities from all instantiated entities.

After derivations are passed to Simulink, they are zeroed. That’s because
in next simulation step, different branch of code can be executed (IF, CASE,
BREAK statements) and it can set those analog values directly, rather than
integrate them.

Only first order DOTs are allowed, according to [3]. DOTs of vector
elements and elements of vector DOTs can’t be used, see [9.5]. DOTs of
record type elements, vector elements and translation of higher DOTs to
form DOT(Quantity, Order) worked in experimental version. They are not
implemented because of VHDL-AMS grammar ambiguity and complexity.
Rather then those, vector literals and vector item access operator are imple-
mented.

Integrated entity ports can’t be registred in constructor of this entity,
because they aren’t its part - they’re only passed as arguments to entity’s
go(..) function. Class Architecture keeps the list of DOTed ports, saved in
ARC file. They are registred in its owner - upper entity or integration layer,

or passed up again.
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Initialization BREAK - without sensitivity clause() - sets integrated analog

values on the initial call to entity’s go(..) function. Input ports are passed

from Simulink already and can be used, as well as generics.

Break statements without break list only indicate augmentation - dis-

continuity of analog signals. They are accepted but not translated, because

this not required in our approach. They could interact with multistep ODE

solvers to set the new analog values and prevent integration aproximation

and unstability. Simulink API doesn’t allow this.
Conditional breaks that have break list of quantity=>value pairs are
translated to C++ if() statement. Assignments are performed when condi-

tion occures.
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9.8 Architecture

Generics and ports are saved to file EntityName.ENT at entity _declaration().
This is used when architectures and instantiated entities are translated. No
C++ code is generated for entity. At architecture_body(), architecture name
is checked (if it appears after END token). A header file Entity Architecture.H
is generated that includes H files of all components. Library unit() cleares
lists of DOTSs, generics, ports, quantities and components. Those are filled
during parsing entity/architecture, checked and reported to user.

There is one C++ structure generated per each architecture. Uniform
skeleton is used, parts are separated and commented, transformed code is
easy to read. Architecture has parts that are performed in different tasks.
C++ constructions generated for them are called in separate according to
simulation process execution flow.

Structure has quantities, generics, instantiated entities and flag Initial-
izationPass as its member variables. They are initialized by constructor’s
parameters or their default values outside of constructor’s body. C++ de-
fault argument values are not used, because of VHDL-AMS’ enhanced map-
ping mechanism. Ordered, named and default actual values are compared to
their formal definitions from ENT description. Unconnected and wrong con-
nected ports/generics and wrong number of ports and generics are checked
and reported.

Main initialization is processed by mdllnitializeSizes(S) that calls Go-
MainEntity(). Tree of instantiated entities is constructed and their internal
and port quantities are set to default values or zero.

Constructor body sets InitializationPass to true and registers analog quan-
tities and components’ ports (that are not mapped to port of this entity) by
function integrated(). Those were collected from architecture _statement part
and read from ARC descriptions of instantiated entities. DOTed ports of this
entity are saved to Entity Architecture. ARC file. Unknown DOTed quantities
are reported.

Function void go(..) with ports as arguments is generated. OUT and

INOUT ports are passed by reference. IN ports are passed by value. It calls
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go(..) for all components with their actual ports first. Then translated archi-
tecture statement part() appears. It executes initial breaks on its first pass
only, called from mdlInitializeConditions(S). True value of variable Initial-
izationPass indicates this first execution and InitializationPass is set to false
at the end of go(..). Then initial values of all integrated quantities are sent to
Simulink. go(..) is called in every simulation cycle and performs behaviour

of architecture.

9.9 Trivial statements

e Algebraic, relational and logical operators are transformed to their

C++ equivalents.

e Expression() checks whether NAND and NOR are in sequence, what is

not allowed.
e Simple simultaneous_statement is transformed to C+-+ assignment
e [F .. USE .. ELSIF .. ELSIF.. ELSE .. END USE

e Only FOR version of generate statement is implemented, translated to
C++ for(..) loop. Thus block declarative part can’t be used. Iteration
identifier is of type INTEGER and with nonegative values only, that

fits for use with our implementation of vectors.

e Quantity’ABOVE(Value) is transformed to C++ function Above(Quantity,
Value)

e Vector’ LENGTH, Vector’HIGH, Vector’ RIGHT, Vector’ LOW, Vector’'LEFT.
They are transformed to their respective C++ functions, defined for

one dimension vectors only.
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Chapter 10
Limits and possibilities

The subset depends on implementation approach restrictions. Main and
general implemented parts were chosen during analyzes at beginning. Other
constraints raised at development process and next ‘local‘ analyzes. Also
some relaxations to VHDL-AMS-RT are available. For details, see [3], im-
plementation description, translation output and Vhdl.jj source. Supported

language features are in Appendix B.

10.1 Hard tasks

All those tasks are hard to implement by chosen approach. Use of symbol

tables could make some of them possible.

Algebraic loop detection It requires symbol tables.

Matrices Even Matlab works perfectly with matrices, there is no option to
pass them to and from Simulink. Operator () is transformed to VeCtor

constructing method. This is unefficient for matrices.

Aggregates Operator () is allowed for vectors only, unless symbol tables
are used. Different possible scalar, vector, record types and contexts

need complicated expression tree analyzes.
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10.2 Easy extensions

Libraries and Packages can be implemented by included C++ headers.
Standard STD package and its NOW function can return Simulink

simulation time.
Operator redefinitions can be defined in C++ as overloaded operators

Type definitions can be transformed to C++ struct or class

10.2.1 Processes, signals, delay mechanism

That what VHDL-AMS calls processes, are threads in IT terminology. They
share the same data (address space), and have parallel execution flow. They
are not implemented, because they work in existing VHDL simulators, not
specific to VHDL-AMS RT.

Transformation to Simulink model and using its possibilities for discrete
signals can be used. This involves separation of analog and discrete values.
Registration, passing, checking of those signals and Simulink restrictions in-
volve more complicated constructions than MatlabInterface.

MS Windows libraries have Win32 thread API, not portable to other
systems. Hooks, timers, event logging are available. There is good support
for external devices on Windows platform. Process.h, stdef.h with _ be-
ginthread (thread code.....) and _ endthread() are used.

Unix systems use POSIX.1 threads (ISO/IEC 9945-1:1996) with mutex
objects for locking and synchronization. Those are portable except Win32
platform. Linux has two implementations, ’green’ lightweight threads that
suit for high-computation applications. Native threads, processes with the
same address space, are efficient for high 1/0. Special HW as A/D cards is
less supported.

DSPs have special process with restricted paralelism.

Wait statement introduces a list of remaining times or deadlines. More
efficient C++ static local variables defined in go(..) function can’t be used

for it, because one entity can be instantiated several times. New structure for
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each instantiated entity as in [Vince,Dudas| solves this problem. Delayed sig-
nals can be implemented by buffers defined in C++, faster then on Simulink

side.

10.3 Relaxations to VHDL-AMS RT

Functions and procedures that are easy to implement can have side effects.
Simultaneous if statement has independent number substatements in each
of its branches. See [3, 0.5.2]
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Chapter 11
Conclusions

Presented solution is easily extensible within boundaries given by chosen
approach. Most of usefull VHDL-AMS behavioral statements can be imple-
mented by simple transformation to C++ code. Structural parts as [10.2]
are easy to add. A lot of ’exotic’ features can’t be used, because of wide and
ambiguous syntax.

Support for other simulation envirionment and ODE solvers than Simulink
is possible. General MatlabInterface is not hard dependant on Simulink and
can be changed to interact with any modular API. This could relax restric-
tions on initalisation process and allow unconstrained ports of main entity.

Language gives designer a large set of possibilities. Approach 'what you
write is what you mean’ allows short code that uses several structural and
behavioral features. Feature of DOTed quantities specified ’directly on place
of use’ hides the necessary processing. This is hard to implement in efficient
way. Context-dependency and ambiguous syntax are much bigger problems
then paralel behaviour. User can’t remember all of those constructions and
probably uses just the preferred subset. However, correct implementation
must accept and process all possibilities. The question is, whether it is
worth. When reading the source, one must look at different parts to check,
if symbol is a function, variable... Even simplier languages, based on Pascal
and C, have more possibilities to distinguish different use. Unparameterized

functions must be called with () pair, array access is by [|. Thus source code
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is easier to read, complain about errors and translate.

Incremental increasing of language features makes illusion that it is pow-
erfull. It teaches What To Do, instead of How To Do. Industrial standards
as C/C++ and Java make profit, because of clean contract - simple, easy-to-

implement language. Extension is by standard and custom reusable moduls.
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Appendix A

Example

-- File model.vhd. Encapsulates Ball entity.

-- 8 - position, v - speed, a - acceleration

ENTITY Model IS
PORT ( QUANTITY start, ground : IN REAL_VECTOR(3);
QUANTITY s, v, a :0UT REAL_VECTOR(3) );
END ENTITY Model;

ARCHITECTURE First OF Model IS
BEGIN
MyBall: ENTITY Ball(Simple)
PORT MAP ( start, ground, s, v, a );
END ARCHITECTURE First;

-- File ball.vhd. Instantiated in top entity Model.
-- Simplified source without discontinuity BREAKs.

-- Use variable step and absolute tolerance 1le-3.

ENTITY Ball IS
GENERIC ( gravity : REAL := 9.81 );
PORT ( QUANTITY start, ground : IN REAL_VECTOR;
QUANTITY s,v,a : OUT REAL_VECTOR );
END ENTITY Ball;
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ARCHITECTURE Simple OF Ball IS
BEGIN
BREAK s => start; --Initialization BREAK

Cycle: FOR i IN O TO s’HIGH GENERATE

IF s(i) > ground(i) -- ’ABOVE not implemented for vector items
USE

a(i) == -gravity;
ELSE

a(i) == -gravity - 200.0*v(i) - 10000000.0%( s(i)-ground(i) );
END USE;

BREAK ON s(i)’ABOVE( ground(i) ); --Descriptive only
END GENERATE;

v’DOT == a;
s’DOT == v;
END ARCHITECTURE Simple;

Translate bottom entity first, then upper entity. Integrate and compile
whole model. See distribution documentation for more. Run:

e vhdlams ball.vhd
e vhdlams model.vhd

e modelmex model first
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Appendix B

Developed framework

Container class Trans see [Trans.doc]

Persistent description classes Encapsulate and store parsed data: Ar-

chitecture, Compo, Component, Entity, Extension, Port, SerialObject

Class ErrorHandler defined by |Grimm]|, it performs parser suntax error

recovery

Class Token generated by JavaCC, changed so lowercase token representa-

tion is used, because VHDL-AMS is case unsensitive

MatlabInterface uniform way to handle scalar and vector ports, integrals

and derivations

Class VhdlParser defined in Vhdljj. It has report/debug functions and
often used error message Trans objects. Several lists are used to carry

additional parsed information.

Class Vhdl processes VHDL source, calls parser. ENT, ARC description
files and H file are generated. It prints report about translated parts,

syntax and some semantical errors.
Class MakeModel integrates whole model

Structure Real defines operators for REAL type
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Structure Vector operators, representation and behaviour of REAL VECTOR
and generally any VECTOR type.

model.cpp C/C++ interface between Simulink API and main entity inte-

gration layer

Tested with Borland C++ 5.02, Matlab 5.3.0.10183 (R11) and Simulink 3.0
(R11) 01-Sep-1998. Developed with Sun JDK 1.3.0, JavaCC 2.1.
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Appendix C

Implemented language features

e Entity, Architecture with generics and quantity ports

e Simple simultaneous _statement |assumed as an assignment rather

then equation]
e Simultaneous if statement

e Generate statement - FOR version only, with nonegative integer gen-
erate parameter, without block declarations

e Initial and conditional BREAK
e Component instantiation
e REAL

e REAL_VECTOR(Size) indexed from 0. Unconstrained REAL _VECTORs

allowed for inner entity ports and internal quantities set before use.
e First order attribute 'DOT for REAL and REAL VECTOR
e Attribute ’ABOVE for REAL

e Algebraic, relational and logical operators
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